Sociology, Department of
Document Type
Article
Date of this Version
2013
Citation
Published in Social Networks 35:4 (2013), pp. 652–668; doi: 10.1016/j.socnet.2013.09.003
Abstract
Network measures assume a census of a well-bounded population. This level of coverage is rarely achieved in practice, however, and we have only limited information on the robustness of network measures to incomplete coverage. This paper examines the effect of node-level missingness on 4 classes of network measures: centrality, centralization, topology and homophily across a diverse sample of 12 empirical networks. We use a Monte Carlo simulation process to generate data with known levels of missingness and compare the resulting network scores to their known starting values. As with past studies (Borgatti et al., 2006; Kossinets, 2006), we find that measurement bias generally increases with more missing data. The exact rate and nature of this increase, however, varies systematically across network measures. For example, betweenness and Bonacich centralization are quite sensitive to missing data while closeness and in-degree are robust. Similarly, while the tau statistic and distance are difficult to capture with missing data, transitivity shows little bias even with very high levels of missingness. The results are also clearly dependent on the features of the network. Larger, more centralized networks are generally more robust to missing data, but this is especially true for centrality and centralization measures. More cohesive networks are robust to missing data when measuring topological features but not when measuring centralization. Overall, the results suggest that missing data may have quite large or quite small effects on network measurement, depending on the type of network and the question being posed.
Included in
Demography, Population, and Ecology Commons, Quantitative, Qualitative, Comparative, and Historical Methodologies Commons, Social Statistics Commons
Comments
Copyright © 2013 Elsevier Inc. Used by permission.