U.S. Department of Defense

 

Date of this Version

2010

Comments

Published in Journal of the Mechanics and Physics of Solids, 58, (2010), 1995–2021

Abstract

Woven fabric is an increasingly important component of many defense and commercial systems, including deployable structures, restraint systems, numerous forms of protective armor, and a variety of structural applications where it serves as the reinforcement phase of composite materials. With the prevalence of these systems and the desire to explore new applications, acomprehensive, computationally efficient model for the deformation of woven fabrics is needed. However, modeling woven fabrics is difficult due, inparticular, to the need to simulate the response both at the scale of the entire fabric and at the meso-level, the scale of the yarns that compose the weave. Here, we present finite elements for the simulation of the three- dimensional, high-rated eformation of woven fabric. We employ a continuum- level modeling technique that, through the use of an appropriate unit cell, captures the evolution of the mesostructure of the fabric without explicitly modeling every yarn. Displacement degrees of freedom and degrees of freedom representing the change in crimp amplitude of each yarn family fully determine the deformed geometry of the mesostructure of the fabric, which in turn provides, through the constitutive relations, the internal nodal forces. In order to verify the accuracy of the elements, instrumented ballistic impact experiments with projectile velocities of 22–550 m/s were conducted on single layers of Kevlar ® fabric. Simulations of the experiments demonstrate that the finite elements are capable of efficiently simulating large, complex structures.

Share

COinS