U.S. Department of Defense
Document Type
Article
Date of this Version
2013
Citation
Applied and Environmental Microbiology, October 2013, Volume 79, Number 19, pp. 5830–5843. doi:10.1128/AEM.00538-13
Abstract
The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNASeq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is approximately 4- fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (PB. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.
Comments
US government work.