U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Date of this Version



Published in Communications in Soil Science and Plant Analysis, 39: 3002–3031, 2008. DOI: 10.1080/00103620802432899


Recently, changes in the utilization practices of animal manures for fertilization have been encouraged to reduce the potential of nonpoint pollution of lakes and streams from agricultural land. However, the potential impact of changing some of these practices has not been fully studied. The objective of this study was to examine the potential impact of limiting poultry litter application times on nutrient movement important to water quality. The WinEPIC model was used to simulate poultry litter applications during the winter months and chemical fertilizer application, with both cool season and warm season grass pastures on the major soil regions of Alabama. With the warm season grass, soluble nitrogen (N) losses could be reduced if the application of poultry litter was made after 30 December. With the cool season grasses, there was no significant difference in application dates for poultry litter for soluble N losses for any soil region, and no improvement could be noted for limiting applications in northern Alabama compared to southern Alabama. No significant difference was observed for soluble phosphorus (P) losses for application date for either warm season or cool season grass pastures. This indicates that factors other than plant P uptake during the growing season were the dominant regulators of the amount of soluble P lost in runoff. Also, the results would indicate that best management practices such as are administered with the P index are more important than plant growth factors in determining N and P losses to the environment.