U.S. Department of Agriculture: Forest Service -- National Agroforestry Center

 

Date of this Version

1997

Comments

Published in JOURNAL OF VIROLOGY,Feb. 1997, p. 1097–1106 Vol. 71, No. 2

Abstract

We previously demonstrated that polyhedron formation (PF) mutants arise at a high frequency during serial passage of the Lymantria dispar nucleopolyhedrovirus (LdMNPV) in the L. dispar 652Y cell line (J. M. Slavicek, N. Hayes-Plazolles, and M. E. Kelly, Biol. Control 5:251–261, 1995). Most of these PF mutants exhibited the traits of few polyhedra (FP) mutants; however, no large DNA insertions or deletions that correlated with the appearance of the FP phenotype were found. In this study, we have characterized several of the PF mutants at the phenotypic and genetic levels. Genetic techniques were used to group the mutations in the LdMNPV PF mutants to the same or closely linked genes. Wild-type viruses were recovered after coinfection of L. dispar 652Y cells with certain combinations of PF mutants. These viruses were analyzed by restriction endonuclease analysis and found to be chimeras of the original PF mutants used in the coinfections. Marker rescue experiments localized the mutations in one group of PF isolates to the region containing the LdMNPV 25K FP gene. The mutations in these PF mutants were identified. Four of five of the LdMNPV FP mutants contain small insertions or deletions within the 25K FP gene. The fifth LdMMNPV FP mutant analyzed contained a large deletion that truncated the C terminus of the 25K FP gene product. All of the deletions occurred within the same potential hairpin loop structure, which had the lowest free energy value (most stable hairpin) of the five potential hairpin loop structures present in the 25K FP gene. One of the insertion mutants contained an extra base within a repetitive sequence. These types of mutations are likely caused by errors that occur during DNA replication. The relationship between the types of mutations found within the LdMNPV 25K FP gene and DNA replication-based mutagenesis is discussed.

Share

COinS