U.S. Department of Energy

 

Date of this Version

2004

Comments

J. AM. CHEM. SOC. 2004, 126, 9387-9398

Abstract

We report the synthesis of colloidal Mn2+-doped ZnO (Mn2+:ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn2+:ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)2 was found to strongly inhibit oxidation of Mn2+ by O2, allowing the synthesis of Mn2+:ZnO to be performed aerobically. Mn2+ ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn2+:ZnO colloids of nearly spherical shape and uniform diameter (6.1 ± 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn2+ with very homogeneous speciation, differing from bulk Mn2+:ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spincoated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 µB/Mn2+ and TC > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn2+:ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.

Share

COinS