U.S. Department of Energy
Date of this Version
1994
Citation
Environ. Sci. Technol. 1994, 28, 1706-1716
Abstract
The time-variant chemical behavior of CoIIEDTA (and other metal-EDTA complexes) was investigated in suspensions of iron oxide-coated sand to identify equilibrium and kinetic reactions that control the mobility of MeIIEDTA complexes in subsurface environments. Batch experiments were conducted to evaluate the adsorption as a function of pH, concentration, and time and to quantify the rate-controlling step(s) of dissolution of the iron oxide by EDTA complexes. Ionic Co2+ exhibited typical cation-like adsorption, whereas MeIIEDTA adsorption was ligand-like, increasing with decreasing pH. Adsorption isotherms for all reactive species exhibited Langmuir behavior, with site saturation occurring at molar values of <0.5% of Fetot. The adsorption of MeIIEDTA enhanced the apparent solubility of the iron oxide phase, which destabilized the CoIIEDTA complex, liberating Co2+ and FeIIIEDTA. The dissolution rate was an order of magnitude slower at pH 6.5 than at pH 4.5 and was influenced by the re-adsorption of solubilized FeIIIEDTA. Two multireaction kinetic models were developed that each included Langmuir adsorption for Co2+ and metal- EDTA species but differed in their depiction of the dissolution mechanism (i.e., ligand- versus protonpromoted dissolution). Ligand-promoted dissolution was most consistent with the experimental data. It is suggested that CoIIEDTA will undergo similar reactions in subsurface environments causing complex, distance-variant retardation.