US Geological Survey

 

Document Type

Article

Date of this Version

2007

Comments

Published in Professional Paper 1717, 1-35, (2007)

Abstract

Discoveries from multibeam sonar mapping and seis-mic-reflection surveys of Yellowstone Lake provide new insight into the recent geologic forces that have shaped a large lake at the active front of the Yellowstone hot spot, a region strongly affected by young (<2 >m.y.), large-volume (>100–1,000s km3) silicic volcanism, active tectonism, and accompanying uplift.

Specifically, our mapping has identified the extent of postcaldera-collapse volcanism and active hydrothermal processes occurring above a large magma chamber beneath the lake floor. Multiple advances and recessions of thick glacial ice have overlapped volcanic and hydrothermal activity leaving a lake basin that has been shaped predominantly by fire and ice. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic,and sedimentary processes. Detailed bathymetric, seismic-reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake morphology and localization of hydrothermal activity in the northern, West Thumb, and central basins. Many previously unknown features have been identified and include more than 660 hydrothermal vents, several very large (>500-m diameter) hydrothermal-explosion craters, many small hydrothermal-vent craters (~1-to 200-m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting postglacial sediments, siliceous hydrothermal-spire structures, sublacustrine landslide deposits, submerged former shorelines, large glacial melting features, incipient faulting along the trace of the Eagle Bay fault zone, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal-explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.

Share

COinS