US Geological Survey


Date of this Version



Published in JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 90, NO. B10, PAGES 8691-8706, SEPTEMBER 10, 1985


Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U.S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress Sh that are considerably lower than the vertical principal stress Sv. In tests for which the greatest horizontal principal stress SH could be determined it, was found to be less than S ν, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures(up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60° W-N65° W is indicated by the orientation of the drilling-induced hydrofractures(N 25° E-N30° E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65° W). This direction is in good agreement with indicators of stress direction
from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional slidings uggeststh at for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected. For coefficients of friction of 1.0, preexisting faults of all orientations should be stable. Laboratory studies on the Yucca Mountain tuffs, reported elsewhere, yield coefficients of friction ranging from 0.6 to 0.9.