US Geological Survey


Date of this Version



J. Appl. Ichthyol. 28 (2012), 168–175; doi: 10.1111/j.1439-0426.2011.01927.


Quantified were the age, growth, mortality and reproductive structure of lake sturgeon (Acipenser fulvescens) collected in the US and Canadian waters of the Namakan Reservoir. The hypotheses were tested that (i) age and growth of lake sturgeon in the Namakan Reservoir would differ by sex and reproductive stage of maturity, and (ii) that the relative strength of year classes of lake sturgeon in the reservoir would be affected by environmental variables. To quantify age, growth and mortality of the population, existing data was used from a multiagency database containing information on all lake sturgeon sampled in the reservoir from 2004 to 2009. Lake sturgeon were sampled in the Minnesota and Ontario waters of the Namakan Reservoir using multi-filament gillnets 1.8 m high and 30–100 m long and varying in mesh size from 178 to 356 mm stretch. Reproductive structure of the lake sturgeon was assessed only during spring 2008 and 2009 using plasma testosterone and estradiol-17β concentrations. Ages of lake sturgeon >75 cm ranged from 9 to 86 years (n = 533, mean = 36 years). A catch-curve analysis using the 1981– 1953 year classes estimated total annual mortality of adults to be 4.8% and annual survival as 95.2%. Using logistic regression analysis, it was found that total annual precipitation was positively associated with lake sturgeon year-class strength in the Namakan Reservoir. A 10 cm increase in total annual precipitation was associated with at least a 39% increase in the odds of occurrence of a strong year class of lake sturgeon in the reservoir. Plasma steroid analysis revealed a sex ratio of 2.4 females: 1 male and, on average, 10% of female and 30% of male lake sturgeon were reproductively mature each year (i.e. potential spawners). Moreover, there was evidence based on re-captured male fish of both periodic and annual spawning, as well as the ability of males to rapidly undergo gonadal maturation prior to spawning. Knowledge of lake sturgeon reproductive structure and factors influencing recruitment success contribute to the widespread conservation efforts for this threatened species.