US Geological Survey

 

Date of this Version

2005

Citation

Arch. Environ. Contam. Toxicol. 49, 76–88 (2005)

Comments

U.S. Government Work.

Abstract

The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River- Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a ‘‘positive control’’ (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portionof the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd inall three tissues of carp; differences between sites were statistically significant (p < 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were highly significant (p < 0.001). Our data indicate that potentially nonlethal blood sampling can be useful for monitoring of selected metals in carp, catfish, and perhaps other fishes.

Share

COinS