U.S. Department of Justice

 

ORCID IDs

http://orcid.org/0000-0002-2663-7785 Eshwar Jagerdeo

Date of this Version

2017

Citation

Rapid Commun. Mass Spectrom. 2017, 31, 782–790.

DOI: 10.1002/rcm.7844

Comments

This article is a U.S. Government work and is in the public domain in the USA.

Abstract

RATIONALE: This paper highlights the versatility of interfacing two ambient ionization techniques, Laser Diode Thermal Desorption (LDTD) and Atmospheric Solids Analysis Probe (ASAP), to high-resolution mass spectrometers and demonstrate the method’s capability to rapidly generate high-quality data from multiple sample types with minimal, if any, sample preparation.

METHODS: For ASAP-MS analysis of solid and liquid samples, the material was transferred to a capillary surface before being introduced into the mass spectrometer. For LDTD-MS analysis, samples were solvent extracted, spotted in a 96-well plate, and the solvent was evaporated before being introduced into the mass spectrometer. All analyses were performed using Atmospheric Pressure Chemical Ionization in positive mode.

RESULTS: Seven consumer "Spice" packets were combined and analyzed by both ASAP and LDTD, which identified 11 synthetic cannabinoids/cathinones by full MS and MS/MS experiments. To further show the usefulness of these techniques, black tar heroin was analyzed, which resulted in the identification of heroin and its impurities (monoacetylmorphine, papaverine, and noscapine). These experiments were performed on the LTQ-Orbitrap to demonstrate the ability to perform both parallel and serial MS and MSn experiments.

CONCLUSIONS: Interfacing LDTD and ASAP to high-resolution mass spectrometers allows for expeditious analysis of a wide range of samples, with minimal or no sample preparation. Both allow for rapid full scan, MS/MS, and/or MSn experiments from a single sample introduction.

Share

COinS