Veterinary and Biomedical Sciences, Department of


Date of this Version



Kyriakou, S.; Tragkola, V.; Alghol, H.; Anestopoulos, I.; Amery, T.; Stewart, K.;Winyard, P.G.; Trafalis, D.T.; Franco, R.; Pappa, A.; et al. Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals 2022, 15, 141. ph15020141


© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/).


Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and (ii) biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e., mixture of leaves and lateral buds) and non-edible (i.e., stems) parts of watercress in an in vitro model of malignant melanoma consisting of human malignant melanoma (A375), non-melanoma (A431) and keratinocyte (HaCaT) cells. The extraction of the main constituents of watercress was performed by subjecting the freeze-dried edible and non-edible samples through different extraction protocols, whereas their concentration was obtained utilizing analytical methodologies. In addition, cell viability was evaluated by the Alamar Blue assay, whereas levels of oxidative stress and apoptosis were determined by commercially available kits. The edible watercress sample contained a higher amount of various nutrients and phytochemicals in the hexane fraction compared to the non-edible one, as evidenced by the presence of PEITC, phenolics, flavonoids, pigments, ascorbic acid, etc. The cytotoxicity potential of the edible watercress sample in the hexane fraction was considerably higher than the non-edible one in A375 cells, whereas A431 and HaCaT cells appeared to be either more resistant or minimally affected, respectively. Finally, levels of oxidative stress and apoptotic induction were increased in both watercress samples, but the magnitude of the induction was much higher in the edible than the non-edible watercress samples. Herein, we provide further evidence documenting the potential development of watercress extracts (including watercress waste by-products) as promising anti-cancer agent(s) against malignant melanoma cells.