Veterinary and Biomedical Sciences, Department of


Date of this Version

May 1999


Published in JOURNAL OF VIROLOGY, May 1999, p. 3778–3788 Vol. 73, No. 5. Copyright © 1999, American Society for Microbiology. Used by permission.


Programmed cell death (PCD), or apoptosis, is initiated in response to various stimuli, including virus infection. Bovine herpesvirus 1 (BHV-1) induces PCD in peripheral blood mononuclear cells at the G0/G1 phase of the cell cycle (E. Hanon, S. Hoornaert, F. Dequiedt, A. Vanderplasschen, J. Lyaku, L. Willems, and P.-P. Pastoret, Virology 232:351–358, 1997). However, penetration of virus particles is not required for PCD (E. Hanon, G. Meyer, A. Vanderplasschen, C. Dessy-Doize, E. Thiry, and P. P. Pastoret, J. Virol. 72:7638–7641, 1998). The mechanism by which BHV-1 induces PCD in peripheral blood mononuclear cells is not understood, nor is it clear whether nonlymphoid cells undergo PCD following infection. This study demonstrates that infection of bovine kidney (MDBK) cells with BHV-1 leads to PCD, as judged by terminal deoxynucleotidyltransferase- mediated dUTP-biotin nick end labeling, DNA laddering, and chromatin condensation. p53 appears to be important in this process, because p53 levels and promoter activity increased after infection. Expression of proteins that are stimulated by p53 (p21Waf1 and Bax) is also activated after infection. Cleavage of Bcl-xL, a protein that inhibits PCD, occurred after infection, suggesting that caspases (interleukin-1β- converting enzyme-like proteases) were activated. Other caspase substrates [poly(ADP-ribose) polymerase and actin] are also cleaved during the late stages of infection. Inhibition of caspase activity delayed cytotoxic activity and virus release but increased the overall virus yield. Taken together, these results indicate that nonlymphoid cells undergo PCD near the end of productive infection and further suggest that caspases enhance virus release.