Virology, Nebraska Center for
Document Type
Article
Date of this Version
5-7-2021
Citation
Engel, A.J.; Kithil, M.; Langhans, M.; Rauh, O.; Cartolano, M.; Van Etten, J.L.; Moroni, A.; Thiel, G. Codon Bias Can Determine Sorting of a Potassium Channel Protein. Cells 2021, 10, 1128. https://doi.org/ 10.3390/cells10051128
Abstract
Due to the redundancy of the genetic code most amino acids are encoded by multiple synonymous codons. It has been proposed that a biased frequency of synonymous codons can affect the function of proteins by modulating distinct steps in transcription, translation and folding. Here, we use two similar prototype K+ channels as model systems to examine whether codon choice has an impact on protein sorting. By monitoring transient expression of GFP-tagged channels in mammalian cells, we find that one of the two channels is sorted in a codon and cell cycle-dependent manner either to mitochondria or the secretory pathway. The data establish that a gene with either rare or frequent codons serves, together with a cell-state-dependent decoding mechanism, as a secondary code for sorting intracellular membrane proteins.
Included in
Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, Virology Commons
Comments
CC-BY