Virology, Nebraska Center for
Document Type
Article
Date of this Version
1-27-2023
Citation
Choi et al., Sci. Adv. 9, eade2708 (2023). 10.1126/sciadv.ade2708
Abstract
Membrane proteins expressed on the surface of enveloped viruses are conformational antigens readily recognized by B cells of the immune system. An effective vaccine would require the synthesis and delivery of these native conformational antigens in lipid membranes that preserve specific epitope structures. We have created an extracellular vesicle–based technology that allows viral membrane antigens to be selectively recruited onto the surface of WW domain–activated extracellular vesicles (WAEVs). Budding of WAEVs requires secretory carrier-associated membrane protein 3, which through its proline-proline-alanine-tyrosine motif interacts with WW domains to recruit fused viral membrane antigens onto WAEVs. Immunization with influenza and HIV viral membrane proteins displayed on WAEVs elicits production of virus-specific neutralizing antibodies and, in the case of influenza antigens, protects mice from the lethal viral infection. WAEVs thus represent a versatile platform for presenting and delivering membrane antigens as vaccines against influenza, HIV, and potentially many other viral pathogens.
Included in
Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, Virology Commons
Comments
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY)