Water Center
Document Type
Article
Date of this Version
10-2013
Citation
Published in Environmental Science & Technology, 47: 13031-13038; doi: 10.1021/es403150x
Abstract
The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4− solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4−, penetration of MnO4− into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with 14C-lableled TCE and used a multistep flooding procedure that quantified the mass of 14C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4− also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of 14C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4− delivery into LPZs for the treatment of dissolved-phase TCE.
Includes Supplementary Data.
Comments
Copyright © 2013 American Chemical Society. Used by permission.