Agricultural Research Division of IANR


Date of this Version



Published in Arthropod-Plant Interactions 4 (2010), pp 207–217.

doi 10.1007/s11829-010-9106-3


Copyright © 2010 Springer Science+Business Media B.V. Used by permission.


Dietary diversification, including consumption of plant tissues such as pollen, can enhance the fecundity of generalist predators, resulting in improved control of pest prey. Supplemental pollen feeding has been observed in many natural enemies, including sheet-web spiders (Araneae: Linyphiidae), which represent a major component of food webs in agroecosystems. Their horizontal, ground-based webs have the potential to intercept pollen grains during anthesis of crop plants, providing the opportunity for consumption of pollen to occur. In laboratory feeding trials, Frontinella communis and Tennesseellum formicum (Araneae: Linyphiidae) readily fed on pollen grains dusted on their webs, with 82 and 92% of spiders consuming pollen within the 210 min trial. These results revealed a strong potential for dietary supplementation with pollen in ground-based sheet-web spiders, indicating that pollen feeding may be an important component of the feeding biology of linyphiids. To measure pollen and prey interception in simulated linyphiid webs, a 20 m × 20 m grid of miniature sticky traps was established within and downwind of a corn agroecosystem. Traps were exposed for 24 h, all intercepted material was transferred to the laboratory for subsequent identification, and replaced with additional traps for 28 consecutive days in July and August 2008, to encompass periods before, during and after anthesis. Over 150,000 corn pollen grains and 5,000 prey items (dominated by Collembola and Hemiptera) were intercepted at simulated web-sites. Dates of peak anthesis resulted in pollen counts as high as 4,000 grains per web-site in the interior of the cornfield. Spatial Analysis by Distance Indices (SADIE) indicated significant temporal and spatial variability in pollen interception within and outside the corn field, but interestingly there was no significant spatial association between pollen and prey. Furthermore, transgenic Bacillus thuringiensis corn expresses insecticidal proteins in pollen, posing an exposure risk to non-target arthropods. Consumption of corn pollen may be a route to transgenic protein exposure in this important taxon of generalist predators.