Education and Human Sciences, College of (CEHS)

 

Date of this Version

7-2016

Comments

A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the degree of Doctor of Philosophy, Major: Human Sciences, Under the Supervision of Professor Steven M. Barlow, PhD. Lincoln, Nebraska: July, 2016

Copyright (c) 2016 Rebecca Custead

Abstract

Processing dynamic tactile inputs is a key function of somatosensory systems. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of motor function following neurological insult. Little is known about tactile velocity encoding in trigeminal networks associated with mechanosensory inputs to the face, or the consequences of movement.

High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile inputs to perioral hairy skin in 20 healthy adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5 cm/s, 25 cm/s, 65 cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatial organization of cerebral and cerebellar blood oxygen level-dependent (BOLD) response as a function of stimulus velocity was analyzed using general linear modeling (GLM) of pooled group fMRI signal data.

The sequential saltatory inputs to the lower face produced localized, predominantly contralateral BOLD responses in primary somatosensory (SI), secondary somatosensory (SII), primary motor (MI), supplemental motor area (SMA), posterior parietal cortices (PPC), and insula, whose spatial organization and intensity were highly dependent on velocity. Additionally, ipsilateral sensorimotor, insular and cerebellar BOLD responses were prominent during the lowest velocity (5 cm/s).

Advisor: Steven M. Barlow

Share

COinS