Animal Science Department


Date of this Version



Journal of Animal Science 71 (1993), pp. 3003-3010. Copyright © 1993 American Society of Animal Science. Used by permission.


Sixty gravid crossbred gilts were allotted to a 2 x 3 x 2 factorial arrangement of treatments: two Ca sources (sun-cured alfalfa meal and CaC03), three dietary concentrations of Ca (50, 75, and 100% of NRC requirements), and two phases of gestation (55 and 105 d). The objectives were to determine the effect of Ca source, dietary Ca concentration, and gestation phase on bone characteristics (bone breaking strength, bone ash percentage, bone density, and bone ash density in the rib, thoracic, and coccygeal bones), to correlate bone responses to determine relative bone activity, and to determine reliability of the coccygeal bones as indicators of Ca status in the body. At 55 d, rib strength and coccygeal ash content were lower (P < .01) than at 105 d of gestation. A gestation phase x Ca concentration (P < .05) interaction occurred. As Ca concentration increased, thoracic strength and rib ash responded quadratically during each gestation phase, for which at 55 d a minima and at 105 d a maxima was produced at 75% of NRC. A Ca source x Ca concentration ( P < .05) interaction occurred. Gilts fed alfalfa had the lowest rib bone and ash density when fed 75% of NRC for Ca, whereas gilts fed CaC03 were highest at this level of Ca compared with the other concentrations. Generally, all bones were positively correlated with respect to their response to dietary Ca concentration. Few negative correlations were observed. At this level of physiological maturity, there was no effect of Ca source and little effect of gestation phase on the bone variables measured at the dietary Ca concentrations used in this experiment. The rib and thoracic bones seem to be the most responsive to dietary Ca concentration.