Biochemistry, Department of
Document Type
Article
Date of this Version
2016
Citation
Pandey MS, Miller CM, Harris EN, Weigel PH (2016) Activation of ERK and NF-κB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs. PLoS ONE 11(4): e0154124. doi:10.1371/journal.pone.0154124
Abstract
Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis), which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is targeted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID 524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068–79, 2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hepmediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/ 2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A) lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respectively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•Hep• ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA, dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells. We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB signaling and that Tyr2519 is critical for these functions.
Included in
Biochemistry Commons, Biotechnology Commons, Other Biochemistry, Biophysics, and Structural Biology Commons
Comments
Copyright: © 2016 Pandey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.