Biochemistry, Department of
Document Type
Article
Date of this Version
1992
Citation
Plant Physiol. (1992) 98, 152-156
Abstract
C4 phosphoenolpyruvate carboxylase (PEPC) is post-translationally regulated by reversible phosphorylation of a specific N-terminal seryl residue in response to light/dark transitions of the parent leaf tissue. The protein-serine kinase (PEPC-PK) that phosphorylates/activates this mesophyll-cytoplasm target enzyme is slowly, but strikingly, activated by high light and inactivated in darkness in vivo by a mechanism involving cytoplasmic protein synthesis/degradation as a primary component. In this report, evidence is presented indicating that the inhibition of Calvin cycle activity by a variety of mesophyll (3-(3,4-dichlorophenyl)-1,1-dimethylurea, isocil, methyl viologen) and bundle sheath (DL-glyceraldehyde)-directed photosynthesis inhibitors blocks the light activation of maize (Zea mays L.) PEPC-PK and the ensuing regulatory phosphorylation of its target enzyme in vivo. Based on these and related observations, we propose that the Calvin cycle supplies the C4 mesophyll cell with (a) a putative signal (e.g. phosphorylated metabolite, amino acid) that interacts with the cytoplasmic protein synthesis event to effect the light activation of PEPC-PK and the concomitant phosphorylation of PEPC, and (b) high levels of known positive effectors (e.g. triosephosphate, glucose-6-phosphate) that interact directly with the carboxylase. The combined result of this complex regulatory cascade is to effectively desensitize PEPC to feedback inhibition by the millimolar levels of L-malate required for rapid diffusive transport to the bundle sheath during high rates of C4 photosynthesis.
Included in
Biochemistry Commons, Biotechnology Commons, Other Biochemistry, Biophysics, and Structural Biology Commons
Comments
Copyright American Society of Plant Biologists. Used by permission.