Biochemistry, Department of

 

Document Type

Article

Date of this Version

1991

Citation

Plant Physiol. (1991) 96, 297-301

Comments

Copyright American Society of Plant Biologists. Used by permission.

Abstract

Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malatesensitivity of the target enzyme has been recently identified as Ser-15 in 32P-phosphorylated/activated dark-form maize PEPC (J-A Jiao, R Chollet [1990] Arch Biochem Biophys 283: 300-305). In order to ascertain whether this N-terminal seryl residue is, indeed, the in vivo regulatory phosphorylation site, [32P]phosphopeptides were isolated and purified from in vivo 32P-labeled maize and sorghum leaf PEPC and subjected to automated Edman degradation analysis. The results show that purified light-form maize PEPC contains 14-fold more 32P-radioactivity than the corresponding dark-form enzyme on an equal protein basis and, more notably, only a single N-terminal serine residue (Ser-15 in maize PEPC and its structural homolog, Ser-8, in the sorghum enzyme) was found to be 32P-phosphorylated in the light or dark. These in vivo observations, combined with the results from our previous in vitro phosphorylation studies (J-A Jiao, R Chollet [1989] Arch Biochem Biophys 269: 526-535; [1990] Arch Biochem Biophys 283: 300-305), demonstrate that an N-terminal seryl residue in C4 PEPC is, indeed, the regulatory site that undergoes light/dark changes in phosphorylation-status and, thus, plays a major, if not cardinal role in the light-induced changes in catalytic and regulatory properties of this cytoplasmic C4-photosynthesis enzyme in vivo.

Share

COinS