Biochemistry, Department of

 

Document Type

Article

Date of this Version

2019

Citation

Published in Biochemistry and Molecular Biology Education 47:3 (May/June 2019), pp 303–317.

DOI 10.1002/bmb.21234

Comments

Copyright © 2019 International Union of Biochemistry and Molecular Biology; published by John Wiley. Used by permission.

Abstract

Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure–function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure–function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA supercoiling dynamics. We also designed accompanying assessments to gauge student learning. Students responded favorably to the modules and showed normalized learning gains of 49% with respect to their ability to understand and relate molecular structures to biochemical functions. By incorporating accurate 3D printed structures, these modules represent a novel advance in instructional design for biomolecular visualization. We provide instructors with the materials necessary to incorporate each module in the classroom, including instructions for acquiring and distributing the models, activities, and assessments.

9 supplemental files attached (below)

Share

COinS