Biochemistry, Department of

 

Document Type

Article

Date of this Version

1993

Comments

Published in Proc. Natl. Acad. Sci. USA Vol. 90, pp. 1132-1136, February 1993. Used by Permission.

Abstract

We have utilized the unicellular cyanobacterium Synechocystis sp. PCC 6803 to incorporate site-directed amino acid substitutions into the photosystemn I (PSI) reactioncenter protein PsaB. A cysteine residue (position 565 of PsaB) proposed to serve as a ligand to the [4Fe-4S] center Fx was changed to serine, histidine, and aspartate. These three mutants- C565S, C565H, and C565D-all exhibited greatly reduced accumulation of PSI reaction-center proteins and failed to grow autotrophically, indicating that this cysteine most likely does coordinate Fx, which is crucial for PSI biogenesis. Interestingly, the strain C565S accumulated significantly more PSI than the other two cysteine mutants and displayed photoreduction of the [4Fe-4S] terminal electron acceptors FA and FB. Mutations were also introduced into a leucine zipper motif of PsaB, proposed to participate in reaction-center dimerization. The mutants L522V, L536M, and L522V/L536M all exhibited wild-type characteristics and grew autotrophically, whereas the L522P mutation prevented PSI accumulation. These data do not provide support for a major structural role of the leucine zipper in reaction-center dimerization or in assembly of Fx. However, the amino acid substitutions incorporated were conservative and might not have perturbed the leucine zipper.

Share

COinS