Education and Human Sciences, College of (CEHS)


Date of this Version



A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirement For the Degree of Doctor of Philosophy, Major: Psychological Studies in Education, Under the Supervision of Professor Rafael J. De Ayala. Lincoln, Nebraska: July 2010
Copyright 2010 Brett P. Foley


The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using several variations of DupER Augmentation (based on different imputation methodologies, deletion rates, and duplication rates), analyzed in BILOG-MG 3, and results are compared to those obtained from analyzing the raw data. Additional manipulated variables include test length and sample size. Estimates are compared using seven different evaluative criteria.

Results are mixed and inconclusive. DupER augmented data tend to result in larger root mean squared errors (RMSEs) and lower correlations between estimates and parameters for both item and ability parameters. However, some DupER variations produce estimates that are much less biased than those obtained from the raw data alone. For one DupER variation, it was found that DupER produced better results for low-ability simulees and worse results for those with high abilities. Findings, limitations, and recommendations for future studies are discussed. Specific recommendations for future studies include the application of Duper Augmentation (1) to empirical data, (2) with additional IRT models, and (3) the analysis of the efficacy of the procedure for different item and ability parameter distributions.