Communication Studies, Department of


First Advisor

Thomas Carrell

Date of this Version

Fall 9-2017


Shahsavarani, B. S. (2017). The Interaction of Temporal and Spectral Acoustic Information with Word Predictability on Speech Intelligibility.


A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy, Major: Human Science (Communication Disorders), Under the Supervision of Professor Thomas D. Carrell. Lincoln, Nebraska: September, 2017

Copyright (c) 2017 Somayeh (Bahar) Shahsavarani


High-level, top-down information such as linguistic knowledge is a salient cortical resource that influences speech perception under most listening conditions. But, are all listeners able to exploit these resources for speech facilitation to the same extent? It was found that children with cochlear implants showed different patterns of benefit from contextual information in speech perception compared with their normal-haring peers. Previous studies have discussed the role of non-acoustic factors such as linguistic and cognitive capabilities to account for this discrepancy. Given the fact that the amount of acoustic information encoded and processed by auditory nerves of listeners with cochlear implants differs from normal-hearing listeners and even varies across individuals with cochlear implants, it is important to study the interaction of specific acoustic properties of the speech signal with contextual cues. This relationship has been mostly neglected in previous research. In this dissertation, we aimed to explore how different acoustic dimensions interact to affect listeners' abilities to combine top-down information with bottom-up information in speech perception beyond the known effects of linguistic and cognitive capacities shown previously. Specifically, the present study investigated whether there were any distinct context effects based on the resolution of spectral versus slowly-varying temporal information in perception of spectrally impoverished speech. To that end, two experiments were conducted. In both experiments, a noise-vocoded technique was adopted to generate spectrally-degraded speech to approximate acoustic cues delivered to listeners with cochlear implants. The frequency resolution was manipulated by varying the number of frequency channels. The temporal resolution was manipulated by low-pass filtering of amplitude envelope with varying low-pass cutoff frequencies. The stimuli were presented to normal-hearing native speakers of American English. Our results revealed a significant interaction effect between spectral, temporal, and contextual information in the perception of spectrally-degraded speech. This suggests that specific types and degradation of bottom-up information combine differently to utilize contextual resources. These findings emphasize the importance of taking the listener’s specific auditory abilities into consideration while studying context effects. These results also introduce a novel perspective for designing interventions for listeners with cochlear implants or other auditory prostheses.

Advisor: Thomas D. Carrell