Food Science and Technology Department



A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree Master of Science, Major: Food Science and Technology, Under the Supervision of Professor Jayne Stratton. Lincoln, Nebraska: August 2010
Copyright 2010 Tara K. Stiles


Recent Salmonella outbreaks have prompted the need for new processing options for peanut products. Traditional heating kill-steps have shown to be ineffective in lipid-rich matrices such as peanut products. High pressure processing is one such option for peanut sauce because it has a high water activity, which has proved to be a large contributing factor in microbial lethality due to high pressure processing. Four different formulations of peanut sauce were inoculated with a five strain Salmonella cocktail and high pressure processed. Results indicate that increasing pressure or increasing hold time increases log10 reductions. The Weibull model was fitted to each kill curve, with b and n values significantly optimized for each curve (p-value < 0.05). Most curves had an n parameter value less than 1, indicating that the population had a dramatic initial reduction, but tailed off as time increased, leaving a small resistant population. ANOVA analysis of the b and n parameters show that there are more significant differences between b parameters than n parameters, meaning that most treatments showed similar tailing effect, but differed on the shape of the curve. Comparisons between peanut sauce formulations at the same pressure treatments indicate that increasing amount of organic peanut butter within the sauce formulation decreases log10 reductions. This could be due to a protective effect from the lipids in the peanut butter, or it may be due to other factors such as nutrient availability or water activity. Sauces pressurized at lower temperatures had decreased log10 reductions, indicating that cooler temperatures offered some protective effect. Log10 reductions exceeded 5 logs, indicating that high pressure processing may be a suitable option as a kill-step for Salmonella in industrial processing of peanut sauces. Future research should include high pressure processing on other peanut products with high water activities such as sauces and syrups as well as research to determine the effects of water activity and lipid composition with a food matrix such as peanut sauces.