U.S. Department of Agriculture: Animal and Plant Health Inspection Service
United States Department of Agriculture Wildlife Services: Staff Publications
Document Type
Article
Date of this Version
12-18-2019
Citation
The U.S. Government Works
Abstract
Antimicrobial resistance is a threat to agricultural production and public health. In this proof-of-concept study, we investigated predicting antimicrobial sensitive/resistant (S/R) phenotypes and host sources of Escherichia coli (n = 128) based on differential fatty acid abundance. Myristic (14:0), pentadecanoic acid (15:0), palmitic (16:0), elaidic (18:19) and steric acid (18:0) were significantly different (α = 0.05) using a two-way ANOVA for predicting nalidixic acid, ciprofloxacin, aztreonam, cefatoxime, and ceftazidime S/R phenotypes. Additionally, analyses of palmitoleic (16:1), palmitic acid (16:0), methyl palmitate (i-17:0), and cis-9,10-methyleneoctadecanoic acid (19:0Δ) showed these markers were significantly different (α = 0.05) between isolates obtained from cattle and raccoons. S/R phenotype prediction for the above antibiotics or host source, based on linear regression models of fatty acid abundance, were made using a replicated-randomized subsampling and modeling approach. This model predicted S/R phenotype with 79% and 81% accuracy for nalidixic acid and ciprofloxacin, respectively. The isolate host source was predicted with 63% accuracy.
Included in
Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, Zoology Commons
Comments
https://doi.org/10.1016/j.diagmicrobio.2019.114966 0732-8893/Published by Elsevier Inc.