Mathematics, Department of

 

Document Type

Article

Date of this Version

1941

Comments

Published in Bull. Amer. Math. Soc. 47 (1941) 781-784.

Abstract

The identity
(1) Σn=1 (qn)/[(1-qn)2] {(1÷(1-q)) + (1÷(1-q2)) + … + (1 ÷ (1 -qn))} = Σn=1 [(n2qn)
was deduced from arithmetical considerations by E. T. Bell. About five years ago, W. N. Bailey proved the relation
(2) Σn=0 [(1-q)(1-q2)…(1-qn] ÷ [(1-z)(1-qz)…(1-qnz)] x [(zn + 1) ÷ (1 - qn +1] = Σn=0 [(qnz) ÷ (1-qnz)2],
from which he obtained (1) by differentiating with respect to z and then putting z = q. A short time later Hall gave an alternate proof of (2) by simply specializing the parameters in a relation between basic series.

Included in

Mathematics Commons

Share

COinS