Department of Physics and Astronomy: Publications and Other Research
Document Type
Article
Date of this Version
8-2-2019
Citation
PHYSICAL REVIEW A 100, 023402 (2019)
DOI: 10.1103/PhysRevA.100.023402
Abstract
We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p orbital to a mixed 5p||σ hole and CF2• antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs.
Comments
©2019 American Physical Society. Used by permission.