Department of Physics and Astronomy: Publications and Other Research

 

Authors

Kurtis D. Borne, Kansas State University
Joseph C. Cooper, University of Oxford
Michael N. R. Ashfold, University of Bristol
Julien Bachmann, Friedrich-Alexander-Universität Erlangen-Nürnberg
Surjendu Bhattacharyya, Kansas State University
Rebecca Boll5, European XFEL
Matteo Bonanomi, Istituto di Fotonica e Nanotecnologie, Dipartimento di Fisica
Michael Bosch, Friedrich-Alexander-Universität Erlangen-Nürnberg
Carlo Callegari, Elettra – Sincrotrone Trieste S.C.p.A.
Martin Centurion, University of Nebraska - LincolnFollow
Marcello Coreno, Elettra – Sincrotrone Trieste S.C.p.A., Istituto di Struttura della Materia
Basile F. E. Curchod, University of Bristol
Miltcho B. Danailov, Elettra – Sincrotrone Trieste S.C.p.A.
Alexander Demidovich, Elettra – Sincrotrone Trieste S.C.p.A.
Michele Di Fraia, Elettra – Sincrotrone Trieste S.C.p.A.
Benjamin Erk, Deutsches Elektronen-Synchrotron DESY
Davide Faccialà, Istituto di Fotonica e Nanotecnologie
Raimund Feifel, University of Gothenburg
Ruaridh J. G. Forbes, SLAC National Accelerator Laboratory
Christopher S. Hansen, University of New South Wales
David M. P. Holland, Daresbury Laboratory
Rebecca A. Ingle, University College London
Roland Lindh, Uppsala University
Lingyu Ma, Brown University
Henry G. McGhee, University College London
Sri Bhavya Muvva, University of Nebraska-LincolnFollow
Joao Pedro Figueira Nunes, University of Nebraska-Lincoln
Asami Odate, Brown University
Shashank Pathak, Kansas State University
Oksana Plekan, Elettra – Sincrotrone Trieste S.C.p.A.
Kevin C. Prince, Elettra – Sincrotrone Trieste S.C.p.A.
Primoz Rebernik, Elettra – Sincrotrone Trieste S.C.p.A.
Arnaud Rouzée, Max-Born-Institut
Artem Rudenko, Kansas State University
Alberto Simoncig, Elettra – Sincrotrone Trieste S.C.p.A.
Richard J. Squibb, University of Gothenburg
Anbu Selvam Venkatachalam, Kansas State University
Caterina Vozzi, Instituto di Fotonica e Nanotecnologie
Peter M. Weber, Brown University
Adam Kirrander, University of Oxford
Daniel Rolles, Kansas State University

Document Type

Article

Date of this Version

12-11-2023

Citation

Nature Chemistry | Volume 16 | April 2024 | 499–505. https://doi.org/10.1038/s41557-023-01420-w

Comments

Open access.

Abstract

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/ quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

Share

COinS