Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

9-2013

Citation

Physica B: Condensed Matter 424 (1 September 2013), pp. 8–12

Comments

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License

Abstract

The investigation of polarization switching kinetics in an ultrathin barium titanate film reveals true threshold switching at a large coercive electric field, evidence that switching is of intrinsic thermodynamic nature, rather than of extrinsic nature initiated by thermal nucleation, which has no true threshold field. The switching speed of a 7 nm thick epitaxial film exhibits a critical slowing as the threshold is approached from above, a key characteristic of intrinsic switching. In contrast, a bulk crystal exhibits nucleation-initiated switching, which has no threshold, and proceeds even at fields well below the nominal coercive field, which was determined independently from the polarization-electric field hysteresis loop. Previously, this phenomenon was only reported for ultrathin ferroelectric polymer Langmuir–Blodgett films. Since both the thermodynamic coercive field and the intrinsic switching kinetics are derived from the mean field theory of ferroelectricity, we expect that these phenomena will be found in other ferroelectric films at the nanoscale.

Share

COinS