Department of Physics and Astronomy: Publications and Other Research
Date of this Version
2019
Document Type
Article
Citation
PHYSICAL REVIEW MATERIALS 3, 064403 (2019)
Abstract
Neutron powder diffraction has been used to investigate the spin structure of the hard-magnetic alloy Fe3+xCo3−xTi2 (x = 0, 2, 3). The materials are produced by rapid quenching from the melt, they possess a hexagonal crystal structure, and they are nanocrystalline with crystallite sizes D of the order of 40 nm. Projections of the magnetic moment onto both the crystalline c axis and the basal plane were observed. The corresponding misalignment angle exhibits a nonlinear decrease with x, which we explain as a micromagnetic effect caused by Fe-Co site disorder. The underlying physics is a special kind of random-anisotropy magnetism that leads to the prediction of 1/D1/4 power-law dependence of the misalignment angle on the crystallite size.
Included in
Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, Engineering Physics Commons
Comments
Used by permission.