Statistics, Department of
The R Journal
Date of this Version
6-2021
Document Type
Article
Citation
The R Journal (June 2021) 13(1); Editor: Dianne Cook
Abstract
A package is introduced that provides the weighted smooth backfitting estimator for a large family of popular semiparametric regression models. This family is known as generalized structured models, comprising, for example, generalized varying coefficient model, generalized additive models, mixtures, potentially including parametric parts. The kernel-based weighted smooth backfitting belongs to the statistically most efficient procedures for this model class. Its asymptotic properties are well-understood thanks to the large body of literature about this estimator. The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation under heteroscedasticity. Further options facilitate easy handling of aggregated data, prediction, and the presentation of estimation results. Cross-validation methods are provided which can be used for model and bandwidth selection.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2021, The R Foundation. Open access material. License: CC BY 4.0 International