Statistics, Department of
The R Journal
Date of this Version
6-2020
Document Type
Article
Citation
The R Journal (June 2020) 12(1); Editor: Michael J. Kane
Abstract
In this article we introduce the R package EpiILM, which provides tools for simulation from, and inference for, discrete-time individual-level models of infectious disease transmission proposed by Deardon et al. (2010). The inference is set in a Bayesian framework and is carried out via Metropolis Hastings Markov chain Monte Carlo (MCMC). For its fast implementation, key functions are coded in Fortran. Both spatial and contact network models are implemented in the package and can be set in either susceptible-infected (SI) or susceptible-infected-removed (SIR) compartmental frameworks. Use of the package is demonstrated through examples involving both simulated and real data.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2020, The R Foundation. Open access material. License: CC BY 4.0 International