Statistics, Department of
The R Journal
Date of this Version
6-2020
Document Type
Article
Citation
The R Journal (June 2020) 12(1); Editor: Michael J. Kane
Abstract
The causality is an important concept that is widely studied in the literature, and has several applications, especially when modelling dependencies within complex data, such as multivariate time series. In this article, we present a theoretical description of methods from the NlinTS package, and we focus on causality measures. The package contains the classical Granger causality test. To handle non-linear time series, we propose an extension of this test using an artificial neural network. The package includes an implementation of the Transfer entropy, which is also considered as a non linear causality measure based on information theory. For discrete variables, we use the classical Shannon Transfer entropy, while for continuous variables, we adopt the k-nearest neighbors approach to estimate it.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2020, The R Foundation. Open access material. License: CC BY 4.0 International