Statistics, Department of
The R Journal
Date of this Version
12-2019
Document Type
Article
Citation
The R Journal (December 2019) 11(2); Editor: Michael J. Kane
Abstract
The bayesdfa package provides a flexible Bayesian modeling framework for applying dynamic factor analysis (DFA) to multivariate time-series data as a dimension reduction tool. The core estimation is done with the Stan probabilistic programming language. In addition to being one of the few Bayesian implementations of DFA, novel features of this model include (1) optionally modeling latent process deviations as drawn from a Student-t distribution to better model extremes, and (2) optionally including autoregressive and moving-average components in the latent trends. Besides estimation, we provide a series of plotting functions to visualize trends, loadings, and model predicted values. A secondary analysis for some applications is to identify regimes in latent trends. We provide a flexible Bayesian implementation of a Hidden Markov Model — also written with Stan — to characterize regime shifts in latent processes. We provide simulation testing and details on parameter sensitivities in supplementary information.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2019, The R Foundation. Open access material. License: CC BY 4.0 International