Statistics, Department of
The R Journal
Date of this Version
12-2018
Document Type
Article
Citation
The R Journal (December 2018) 10(2); Editor: John Verzani
Abstract
We discuss implementation of a profile likelihood method for estimating a Pearson correlation coefficient from bivariate data with censoring and/or missing values. The method is implemented in an R package clikcorr which calculates maximum likelihood estimates of the correlation coefficient when the data are modeled with either a Gaussian or a Student t-distribution, in the presence of left, right, or interval censored and/or missing data. The R package includes functions for conducting inference and also provides graphical functions for visualizing the censored data scatter plot and profile log likelihood function. The performance of clikcorr in a variety of circumstances is evaluated through extensive simulation studies. We illustrate the package using two dioxin exposure datasets.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2018, The R Foundation. Open access material. License: CC BY 4.0 International