Statistics, Department of

 

The R Journal

Date of this Version

12-2018

Document Type

Article

Citation

The R Journal (December 2018) 10(2); Editor: John Verzani

Comments

Copyright 2018, The R Foundation. Open access material. License: CC BY 4.0 International

Abstract

Sufficient dimension reduction (SDR) turns out to be a useful dimension reduction tool in high-dimensional regression analysis. Weisberg (2002) developed the dr-package to implement the four most popular SDR methods. However, the package does not provide any clear guidelines as to which method should be used given a data. Since the four methods may provide dramatically different dimension reduction results, the selection in the dr-package is problematic for statistical practitioners. In this paper, a basis-adaptive selection algorithm is developed in order to relieve this issue. The basic idea is to select an SDR method that provides the highest correlation between the basis estimates obtained by the four classical SDR methods. A real data example and numerical studies confirm the practical usefulness of the developed algorithm.

Share

COinS