Statistics, Department of
The R Journal
Date of this Version
12-2021
Document Type
Article
Citation
The R Journal (December 2021) 13(2); Editor: Dianne Cook
Abstract
Partial association, the dependency between variables after adjusting for a set of covariates, is an important statistical notion for scientific research. However, if the variables of interest are ordered categorical data, the development of statistical methods and software for assessing their partial association is limited. Following the framework established by Liu et al. (2021), we develop an R package PAsso for assessing Partial Associations between ordinal variables. The package provides various functions that allow users to perform a wide spectrum of assessments, including quantification, visualization, and hypothesis testing. In this paper, we discuss the implementation of PAsso in detail and demonstrate its utility through an analysis of the 2016 American National Election Study
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2021, The R Foundation. Open access material. License: CC BY 4.0 International