U.S. Department of Defense
Document Type
Article
Date of this Version
2017
Citation
LNICST 184, pp. 390–401, 2017
Abstract
The frequency-division duplex (FDD) nodes use two separate frequency bands (separated by a guard band) for transmission and reception, thus enabling the full-duplex (FD) communication. On the other hand, the use of directional FDD nodes in multihop wireless network offers the advantages of larger transmission range, better link reliability, and spatial reuse, resulting in a much higher throughput and superior interference mitigation. However, the multihop FDD communication partitions the nodes in two classes (or genders) wherein the nodes of the same class (or gender) in a neighborhood cannot communicate with each other. This can seriously impact the availability of neighboring nodes for communication, and lead to disconnected nodes (or regions) in the network. In this paper, an algorithm is presented to assign the appropriate genders to these nodes in a multi-hop network such that each node is able to communicate with its multiple 1-hop neighbors, located in different directions. Our simulation results demonstrate that approximately half of the neighbors of each node are of the opposite gender and they are distributed in different directions, thus enabling robust, multipath, and high throughput communication in the network.
Comments
© ICST Institute for Computer Sciences
This document is a U.S. government work and is not subject to copyright in the United States.
DOI: 10.1007/978-3-319-51204-4 32