U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Document Type

Article

Date of this Version

2008

Citation

Published in Agron. J. (2008) 100:S-117–S-131 . DOI:10.2134/agronj2006.0370c

Abstract

Remote sensing has provided valuable insights into agronomic management over the past 40 yr. The contributions of individuals to remote sensing methods have lead to understanding of how leaf reflectance and leaf emittance changes in response to leaf thickness, species, canopy shape, leaf age, nutrient status, and water status. Leaf chlorophyll and the preferential absorption at different wavelengths provides the basis for utilizing reflectance with either broad-band radiometers typical of current satellite platforms or hyperspectral sensors that measure reflectance at narrow wavebands. Understanding of leaf reflectance has lead to various vegetative indices for crop canopies to quantify various agronomic parameters, e.g., leaf area, crop cover, biomass, crop type, nutrient status, and yield. Emittance from crop canopies is a measure of leaf temperature and infrared thermometers have fostered crop stress indices currently used to quantify water requirements. These tools are being developed as we learn how to use the information provided in reflectance and emittance measurements with a range of sensors. Remote sensing continues to evolve as a valuable agronomic tool that provides information to scientists, consultants, and producers about the status of their crops. This area is still relatively new compared with other agronomic fields; however, the information content is providing valuable insights into improved management decisions. This article details the current status of our understanding of how reflectance and emittance have been used to quantitatively assess agronomic parameters and some of the challenges facing future generations of scientists seeking to further advance remote sensing for agronomic applications.

Share

COinS