U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska
Document Type
Article
Date of this Version
2014
Citation
J Plant Nutr. Soil Sci., 2014
Abstract
To examine the combined effects of phosphorus (P) nutrition and CO2 on photosynthesis, chlorophyll fluorescence (CF), and nutrient utilization and uptake, two controlled-environment experiments were conducted using 0.01, 0.05 and 0.20 mM external phosphate each at ambient and elevated CO2 (aCO2: 400 and eCO2: 800 mmol mol–1, respectively). The CF parameters were affected more by P nutrition than by CO2 treatment. Photoinhibition of photosystem II (PSII) was due to increased minimal CF (Fo') and decreased maximal CF (Fm'), and efficiency of energy harvesting (Fv'/Fm'). In addition, reduced electron transport rate (ETR), the quantum yield of PSII (FPSII) and CO2 assimilation (FCO2 ), and overall photochemical quenching in the P-deficient leaves led to reduction in the efficiency of energy transfer to the PSII reaction center. Stimulation in the FPSII/FCO2 and photorespiration (ETR/Pnet) was found under P deficiency, whereas the opposite was the case under CO2 enrichment. On average, photosynthetic rate (Pnet) and stomatal conductance declined by 50–53% at 0.05 mM P and by 70–72% at 0.01 mM P as compared to the 0.20 mM P treatment. However, P deficiency, especially at eCO2, tended to increase the intrinsic water-use efficiency. In the P-deficient plants, the decline in the P and N utilization efficiency (up to 91%) of biomass production was mainly associated with greater reduction in the biomass relative to the tissue P concentration as the P supply was reduced. However, it was significantly stimulated by eCO2 especially at higher P supply. The CO2 · P interaction was observed for some parameters such as Fo', Fm', P utilization efficiencies of photosynthesis and biomass production that might be attributed to the irresponsiveness of these parameters to eCO2 under low P treatment. Thus, P deficiency limited the beneficial effect of eCO2. A close relationship between total biomass and photosynthesis with the P and N utilization or uptake efficiencies was found. The P utilization efficiency of Pnet appeared to be stable across a range of leaf P concentrations, whereas the N-utilization efficiency markedly increased with leaf P and differed between CO2 levels. An apparent effect of both the treatments (P and CO2) on N-uptake and utilization efficiency also indicated the alteration in N acquisition and assimilation in cotton plants.
Comments
U.S. Government work