U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

10-18-2018

Citation

2018 New Phytologist Trust

Comments

New Phytologist (2019) 222: 183–192 doi: 10.1111/nph.15562

Abstract

The development of a predictive understanding of how atmospheric CO2 enrichment is affecting the primary productivity of the terrestrial biosphere is among the most pressing of ecological challenges. The terrestrial biosphere absorbs c. 25% of anthropogenic carbon (C) emissions (Le Quere et al., 2018). Uncertainty in CO2 effects on ecosystem C uptake is a major constraint in the prediction of C cycling and the provisioning of productivity- related ecosystem services.

Grasslands cover c. 25% of the terrestrial area and are an important contributor to the global C balance (Sala et al., 1996). CO2 enrichment stimulates the aboveground net primary productivity (ANPP) of most water-limited grasslands by increasing plant water use efficiency (WUE; productivity per unit of transpiration; Morgan et al., 2004; Nowak et al., 2004; Fatichi et al., 2016), but grassland ANPP, as other ecosystem functions, is determined by drivers in addition to water availability which act simultaneously and often interactively with CO2 (Polley et al., 2011). CO2 enrichment usually shows greater stimulation of plant productivity when nitrogen (N) availability is relatively high (Owensby et al., 1994; Reich & Hobbie, 2013; Mueller et al., 2016), for example. Other drivers include precipitation timing (Hovenden et al., 2014), disturbance regimes (Newton et al., 2014), plant species composition (Langley & Megonigal, 2010; Fay et al., 2012; Polley et al., 2012) and soil properties (Epstein et al., 1997, 1998), including soil texture, which influences water availability to plants (Tor-Ngern et al., 2017).

Share

COinS