U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska
Document Type
Article
Date of this Version
2001
Abstract
The widespread use of soil phosphorus (P) data, either in the context of agronomic or environmental management, requires an explicit understanding of potential errors related to soil P testing. This study compares a variety of soil P extraction methods, each performed by 9 separate laboratories on 24 soils from across the United States. Soil clay content ranged from 0 to 47%, pH from 4.2 to 8.6, and Mehlich-3 P concentration from 2 to 205 mg kg-1. Average interlaboratory coefficients of variation (CVs) ranged from 0.11 to 0.22 for solution extracts (Bray-1 P, Fe-strip P, Mehlich-3 P, and Olsen P) and from 0.11 to 0.70 for saturated paste extracts (resin capsules and resin membranes, incubated for 2, 4, and 7 days). For soil tests based upon solution extracts, Olsen P exhibited the greatest variability among laboratories (CV = 0:22); despite its reputed suitability for a wider range of soils than Bray-1 and Mehlich-3. Soil test data were highly correlated, with the lowest correlations occurring between Olsen and Bray-1 P or Olsen and Mehlich-3 P (r = 0:77 and 0.84, respectively) and the highest correlations occurring between Olsen P and Fe-strip P or Mehlich-3 and Bray-1 P (r = 0:94 for both correlations). Results indicate that some common soil test P protocols, when carefully conducted, yield data that may be reliably compared, such as in the compilation of regional and national soil databases.
Comments
Published in COMMUN. SOIL SCI. PLANT ANAL., 32(15&16), 2325–2345 (2001).