U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2003

Comments

Published in JOURNAL OF PLANT NUTRITION, Vol. 26, Nos. 10 & 11, pp. 2307–2319, 2003. DOI: 10.1081/PLN-120024283

Abstract

Iron deficiency is estimated to affect over one-half the world population. Improving the nutritional quality of staple food crops through breeding for high bioavailable iron represents a sustainable and cost effective approach to alleviating iron malnutrition. Forty-nine late maturing tropical elite maize varieties were grown in a lattice design with two replications in three locations representing three agroecologies in West and Central Africa to identify varieties with high levels of kernel-Fe. Bioavailable iron was assessed for some varieties selected for high Fe concentration in kernel and improved agronomic traits using an in vitro digestion/Caco-2 cell model. Significant differences in kernel-Fe and -zinc concentration were observed among varieties (P-1, while kernel-Zn levels ranged from 16.5 to 24.6 mg kg-1. Environment did not have a significant effect on kerneliron and -zinc levels, but genotype by environment (G ×E) interaction was highly significant. The genetic component accounted for 12% of the total variation in kernel-Fe and 29% for kernel-Zn levels. Kernel-Fe was positively correlated with kernel-Zn (R2=0.51, P

Share

COinS