U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2001

Comments

Published in JOURNAL OF PLANT NUTRITION, 24(6), 921-943, (2001).

Abstract

Previous studies reported manure application to eroded Portneuf silt loam soil (Coarse-silty, mixed, superactive, Durinodic Xeric Haplocalcid) improved dry bean (Phaseolus vulgaris L., cv. Viva) yield to levels of topsoil. These yield increases only correlated with whole-plant zinc (Zn) concentration and soil organic matter. This might be related to enhanced arbuscular mycorrhizal (AM) colonization stimulated by manure application. A greenhouse study with dry bean suggested a relationship between manure application, increased AM colonization, and whole-plant Zn uptake, while field studies with wheat (Triticum aestivum L.) and sweet corn (Zea mays L.) did not. To clarify the apparent contradiction of manure application on AM relationships, the present field study with dry bean and sweet corn was conducted in subsoils on the same experimental site established in 1991 and used in previous studies. The existing rotation also allowed the study of the effects of previously fallowed versus wheat cropped subsoils on yield, AM colonization and nutrition of dry bean and sweet corn. Average mycorrhizal root colonization in dry bean was greater on unamended than on manure-amended soils but was not related to increases in yield, Zn concentration, or Zn uptake. Average colonization of sweet corn roots was generally greater in unamended than manure-amended soils, but yields were greater in manure-amended soils. Colonization of sweet corn roots measured over time was consistently greater in subsoils previously cropped to wheat than fallowed, but yields were similar. Previous wheat-cropping resulted in leveling off of colonization beginning 7 July (second sampling) in dry bean, while previous fallow resulted in continuously increasing colonization throughout the five sampling periods. Bean yields were greater on subsoils previously cropped than fallowed; thus yields were generally not related to AM colonization. Results of our study confirm other field results where AM colonization was greater in unamended than manure-amended soils and in cropped than in fallowed soils. Any yield increases observed were not closely related to AM colonization.

Share

COinS