U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Document Type

Article

Date of this Version

2005

Comments

Published in Communications in Soil Science and Plant Analysis, 36: 2807–2822, 2005. DOI: 10.1080/00103620500304184

Abstract

The National Program structure of USDA-ARS provides an opportunity to coordinate research on problems of national and global significance. A team of USDA-ARS scientists is conducting nationally coordinated research to develop predictions of manure N availability to protect water quality and improve farm solvency. Experimental design and research protocols were developed and used in common across all participating locations. Laboratory incubations are conducted at each location with a minimum of three soils, three temperatures, two wetting/drying regimes, and two manure treatments. A soil from the central United States (Catlin silt loam, fine-silty, mixed, superactive, mesic Oxyaquic Argiudoll) is used as an internal reference across all locations. Incubation data are compiled across locations to develop generalized predictions of manure nitrogen mineralization (Nmin). Field validation data are then obtained by monitoring nitrogen (N) transformations in manure-amended soil cores equipped with anion exchange resin to capture leached nitrate. This field data will be used to compare laboratory-based predictions with field observations of Nmin in each soil, climatic zone, and manure type represented. A Decision Support System will then be developed for predicting manure N mineralization across ranges in soil, climate, and manure composition. Protocols used by this research team are provided to 1) document the procedures used and 2) offer others detailed information for conducting research on nutrient transformation processes involving collaboration across locations or complementary research between laboratory and field environments.

Share

COinS