U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska
Document Type
Article
Date of this Version
Spring 2010
Citation
Wing Beats, Spring 2010, pp. 29-34
Abstract
Mosquito-borne pathogens are among the most important sources of human disease that cause morbidity and mortality worldwide. They include the viruses responsible for deadly outbreaks of yellow fever, Rift Valley fever, eastern equine encephalitis, Japanese encephalitis and dengue, and an assortment of other serious illnesses caused by the etiological agents of West Nile fever, St Louis encephalitis, Murray Valley encephalitis, Venezuelan equine encephalitis and chikungunya disease. Dengue viruses, of which there are 4 serotypes, cause an estimated 50-100 million new illnesses each year (and 25,000 deaths) while the latest chikungunya epidemic has lasted longer, affected more people, and occurred over a wider geographic area than any previous outbreak of the disease. Yellow fever outbreaks continue to occur sporadically in South America and Africa when either vaccination or vector control are inadequate. These outbreaks have been controlled by creating barrier zones of vaccinated people and by increasing the intensity of vector control. The threat of devastating outbreaks of yellow fever remains, as illustrated by continuing quarantine and vaccination requirements for international travel. The most devastating of all mosquito-borne diseases is malaria, which kills an estimated 1 million people annually, while infecting another 500 million. Although public health efforts have been able to reduce or eliminate vector-borne pathogens in many situations, some parts of the world have actually suffered increases during the past 30 years. A number of agencies have responded to this problem with much increased levels of attention: World Health Organization, Bill and Melinda Gates Foundation, President’s Malaria Initiative, Institute Pasteur, US Centers for Disease Control and Prevention, and US National Institutes of Health. However, morbidity and mortality due to mosquito-borne diseases is increasing.
Today, mosquito wars are being fought around the globe and on many fronts. Insecticide-treated bed nets are mass-produced and distributed to the hardesthit malarious regions in Africa, India and southern Asia. Vaccines have been developed to protect humans and domestic animals against Yellow fever, Japanese encephalitis, Rift Valley fever and eastern equine encephalitis, with intensive ongoing research targeting dengue, West Nile virus, and malaria vaccine development. New skin and clothing repellents for personal protection against all biting insects are being developed, and insecticide and related application technology development is in full swing. Of these, the key component for protecting humans from mosquito- borne illness is the use of effective insecticides that quickly kill millions of mosquitoes before they can pass their pathogens to sicken or kill humans. Mosquito adulticides and larvicides are a key component of our assault, along with indoor residual spraying and insecticide-treated bed nets.
Unfortunately, mosquitoes are fighting back somewhat successfully by developing resistance to currently used mosquito adulticides. To date at least 100 species of pathogen-carrying mosquitoes have overcome the effects of today’s limited arsenal of adulticides. We now have only 2 chemical classes of adulticides available for adult mosquito control: organophosphates (OPs) and pyrethroids. Malathion is one of our oldest organophosphate adulticides and the workhorse of this class. It was developed in the early 1950s for agricultural pest control and has been used extensively around the world as a mosquito adulticide since 1953. It is a cholinesterase inhibitor that impairs nerve cell transmission. Resistant mosquitoes have at least 3 biochemical processes for detoxifying this class of insecticide. Pyrethroid insecticides were developed in the 1970s as analogs of pyrethrum, a natural product of chrysanthemum flowers, known for its insecticidal properties for hundreds of years. Pyrethroids provide rapid knockdown of mosquitoes by binding to sodium channels on nerve cells and subsequently depolarizing them to stop neural transmission. Resistant mosquitoes are now capable of detoxifying pyrethroids by the above 3 biochemical processes and target cell insensitivity. Larvicides offer more target sites for killing immature mosquitoes, but increased tolerance or resistance has also been reported among different larvicide classes including the stomach poison Bacillus sphaericus, insect growth regulator (methoprene), and a commonly used OP (temephos) among some mosquito species.